Digital Radiology for Corrosion Inspection and Wall Thickness Measurement of Insulated Pipes

Content:
- basic principles of TRT
- software for evaluation and documentation
- corrosion depth evaluation
- validation of methods
- development of standards

AGFA, GE S&IT, HOIS, IAEA

Uwe Zscherpel, Uwe Ewert, BAM Berlin
Peter Rost, BASF SE, Ludwigshafen; Steve F. Burch, ESR Technology, UK

May 2011, Bodo, Norway

Projection Radiography

Examples on Corrosion and Erosion

Corrosion and Seads
Corrosion
Erosion

Uwe Zscherpel, Uwe Ewert, BAM Berlin
Peter Rost, BASF SE, Ludwigshafen; Steve F. Burch, ESR Technology, UK

May 2011, Bodo, Norway
History: radiographic wall thickness evaluation

- applied since ca. 1950
- nearly no literature until 1980
- growing importance in chemical industry caused by on-stream application
- since 1996 projects BASF und BAM for physical studies
- Never standardized (first CEN draft 2010 by S. Burch, HOIS)

classical tangential set-up of TRT:
- pipe line
- radiation source, Ir 192
- insulation
- profile line
- film, imaging plate, or flat panel
Projection Radiography

Example: distribution station

on-site exposure, Ir 192
film
source

radiograph

Error sources:
- wrong density range
- inaccurate edge detection (unsharpness)
- wrong magnification factor
Principle of projection radiography (TRT)

- **tangential penetration of pipe wall**
- \(w' \) measured on film
- \(f \) - film focus distance
- \(r \) - outer pipe radius
- \(R \) - outer radius of insulation
- \(w' \) - wall thickness projection on detector plane

Digitized film

- Imaging plate
- **AGFA BAM project in 1995 ff** (Peter Willems)
- Special NDT IP reader prototype (28 \(\mu \)m pixel)

- D7 + Pb, 50 \(\mu \)m pixel size
- 25 % exposure time, 145 \(\mu \)m pixel size
Projection Radiography

film digitization (FD)

imaging plate (CR)

flat panel (DDA)

- single program for evaluation of all digital images, no size limitation
- support for all detectors by external 16 bit LUT tables for linearisation (gray value proportional to radiation intensity)
- easy documentation by protocol generation in PDF format

16 bit software platform

image processing know-how on Windows PC:
(since 2006 ISee!, see http://www.kb.bam.de/ic.html)

- fully 16 bit data depth for evaluation and display
- unlimited image sizes, limited only by main memory (>1 GByte)
- all detectors (digitized film, imaging plates, flat panel detectors) via external 16 bit Lookup Tables (LUT) linearizable, ASCII text
- fast rekursive moving average filtering for arbitrary sizes of high and low pass filters, convolution with variable kernels, FFT-Filters
- sub-sampling for image display with true averaging
- error estimation for measured values and geometric correction
- quick documentation of measurements by protocol generation and transfer to Word (wtScope for BASF, wtModule in Rhythm, GE S&IT)
- protection of application by individual encrypted license keys
Projection Radiography

- input exposure parameters
- wall thickness result
- table with measurement regions
- tangential wall thickness algorithm
- wall thickness deviation in measurement region

PC based wall thickness measurement

- synchronous display of positions in profile and image!
- position correction by hand, if algorithm fails!

Uwe Zscherpel, Uwe Ewert, BAM Berlin
Peter Rost, BASF SE, Ludwigshafen; Steve F. Burch, ESR Technology, UK
May 2011, Bodo, Norway
Projection Radiography

PC generated measurement protocol

Projection Radiography

PC based wall thickness measurement

Algorithms: problem: correct detection of wall positions

characteristic points, curve fitting, CT reconstruction

BASF

Digital Radiology for Corrosion Inspection

Uwe Zscherpel, Uwe Ewert, BAM Berlin

Peter Rost, BASF SE, Ludwigshafen; Steve F. Burch, ESR Technology, UK

May 2011, Bodo, Norway
Limits of Tangential Radiography (TRT):

\[L_{\text{max}} = 2W \sqrt{D_a/W - 1} \]

Energy:
- 100 kV : 10 mm
- 200 kV : 30 mm
- 300 kV : 40 mm
- 400 kV : 50 mm
- Se-75 : 60 mm
- Ir-192 : 75 mm
- Co-60 : 120 mm

Steel pipes up to 20” with NDT film and X-ray, Ir-192, Co-60

Algeria Hungary Romania Iran Pakistan Germany Uruguay Syria India Turkey Malaysia Canada
Fabricated Reference Blocks with Steps and Holes:

Idea: explore inspection methods with known wall thicknesses
algorithm detects edges, visual not seeable in image:

extension of application range in comparison to visual evaluation

Ir 192, DN200:
6 → 11 mm

Co 60, DN300:
14 → 24 mm

2006: Validation of wtScope, CR-Tower and Ir-192

Not accessible with Ir-192

Uncertainty 0.2 mm

0.5 mm

BAM
BASF
GE S&IT
Validation as measurement method according to ISO 17025:

2.9 Validation results for stepped pipes DN 100 filled with H₂O

Steel pipes 50 – 300 mm dia, empty, water filled, w/o insulation

Second inspection technique possible:

2. Corrosion assessment from local film density changes (Double Wall Technique, DWT)
Local corrosion: wall thickness differences in penetration direction (DWT)

Source → Pipe → Erosion $w - \Delta w$ → Intensity change, ΔI → Detector

Attenuation law:

$$I_w = I_0 e^{-\mu_{eff} w}$$

μ_{eff} - effective attenuation coefficient

Relative measurement:

2 step algorithm

1. Calibration:

$$\mu_{eff} = \frac{\ln(D_{REF} / D_{IQI})}{\Delta w_{IQI}}$$

2. Measurement:

$$\Delta w = \ln(D_{REF} / D_{MEAS}) / \mu_{eff}$$

DWT for local corrosion

1. Calculation of effective attenuation coefficient μ_{eff}

- Known hole depth
- Known pipe wall thickness w at reference point

Result:

$$\mu_{eff} = f(w)$$

Dep. on radiation energy and wall thickness differences
Double wall technique 6" and 8" (100 kV), with and without insulation

\[y = 0.6689x - 0.3385 \quad R^2 = 0.7316 \]
\[y = 0.5039x - 0.3927 \quad R^2 = 0.3817 \]

- Iran, Uruguay
- decreasing \(\mu_{\text{eff}} \) with penetrated wall and insulation

80 % of all measurements: \(\mu_{\text{eff}} = 0.046 +/- 0.005 \text{ mm}^{-1} \)
Computer based evaluation with wtScope/iSee! software: accuracy 10% wt, $\mu_{eff}=0.028/mm$.

Practical application: profile plot in wall thickness loss.
real pipe, inner corrosion, insulated

corrosion mapping after median high pass (gray value prop. penetrated wall thickness, 1x300 points):

corroded pipe with weld

corrosion mapping after median high pass (gray value prop. to penetrated wall thickness 1x200 points):
Comparison Film / CR

DWT with Ir-192:

Result of wtScope validation for CR Tower by BAM / BASF / GE S&IT

reason: scatter sensitivity!

Parameter	Ir-192	Co-60
DWT: μ_{eff} | 0.046 +/- 0.005 mm$^{-1}$ | 0.028 +/- 0.004 mm$^{-1}$
TRT: L_{max} for $D_{\text{center}} = 2$ and $D_{\text{max}} = 4$ | 80 mm | 130 mm
TRT: L_{max} for $D_{\text{max}} = 8$ | 95 mm | 155 mm

agreed results of IAEA CRP: Limits of film application!

Accuracy for TRT wall measurement: < 0.3 mm

Accuracy for DWT depth measurement: 0.5 mm or 10%wt
Summary

- Program for PC based routine measurements on images from all radiographic detectors, tangential wall thickness measurement and local corrosion, simple documentation
- Wall thickness range enlarged compared with visual evaluation in projection radiography
- Measurement of corrosion depth (in centre of pipe)
- Validation as measurement methods acc. to ISO 17025
- Programs transferred to GE S&IT for worldwide marketing (Rhythm Version 3 all methods implemented)
- Differences in sensitivity to scattered radiation between film and imaging plates

Inspection technique not yet standardised, written practice necessary!

Standard development at CEN started in 2010
Digital Radiology for Corrosion Inspection

BASF

Proposed Draft standards:
Radiographic inspection of corrosion and deposits in pipes by X- and gamma rays
— Tangential radiographic inspection
— Double wall radiographic inspection

Dr Steve F Burch, ESR Technology

HOIS

See NDT informasjon fra Norsk Forening for Ikke-devstruktiv Proving, April 2011

Uwe Zscherpel, Uwe Ewert, BAM Berlin
Peter Rost, BASF SE, Ludwigshafen; Steve F. Burch, ESR Technology, UK

May 2011, Bodo, Norway

The End